

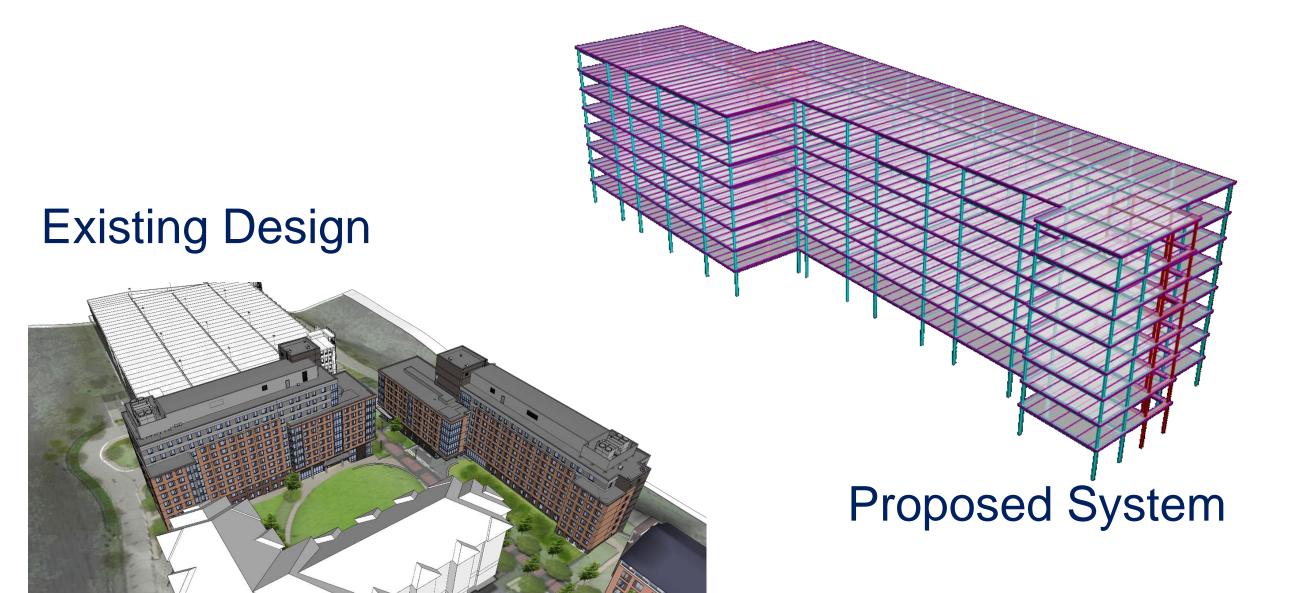
Mark Bland Advisor | Dr. Aly Said Structural Option

AE Senior Thesis April 11, 2015

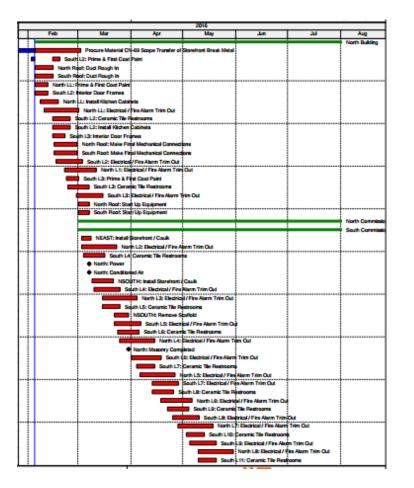
Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System


Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System


Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

Construction Breadth

Building Introduction

Site Plan | Existing Gravity | Existing Lateral

Proposal

Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

Use: Student Housing **Size**: 170,000 sq. ft.

Stories: 9

Height: 87 ft.

Construction: September 2014 – July 2016

Towson University: Owner

Whiting Turner Contracting: General Contractor and CM

Ayers/Saint/Gross: Architect

Hope Furrer Associates: Structural Engineer

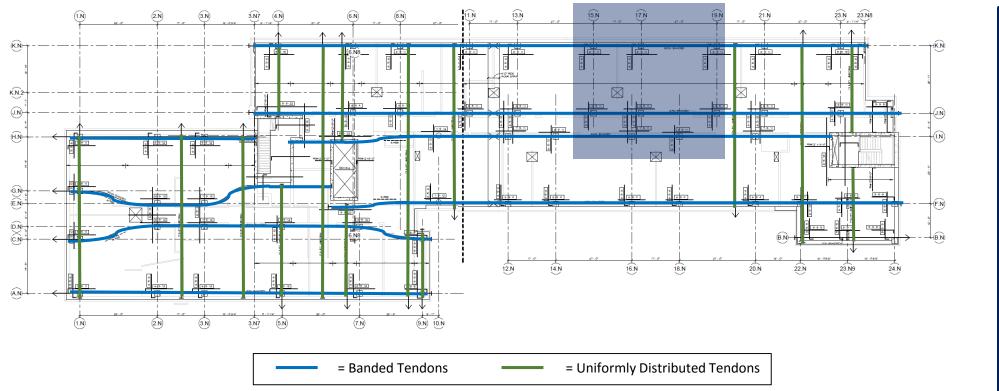
Building Introduction

Site Plan | Existing Gravity | Existing Lateral

Proposal

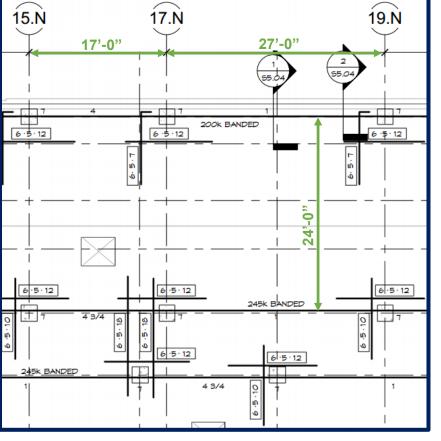
Purpose | Solution

Redesigned Gravity System
Hollow Core Plank | Steel Columns | Steel Beams


Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis


Conclusion

Comparison

Existing Gravity System

- 8" thick slab
- Two-way post-tensioned flat plate
- 24" x 24" Concrete columns

Typical Bay

Typical Loading

Loading	Typical Floor	Typical Roof	Penthouse
ead Load	108	123	150
ive Load	55	30	100
otal Load	163	153	250

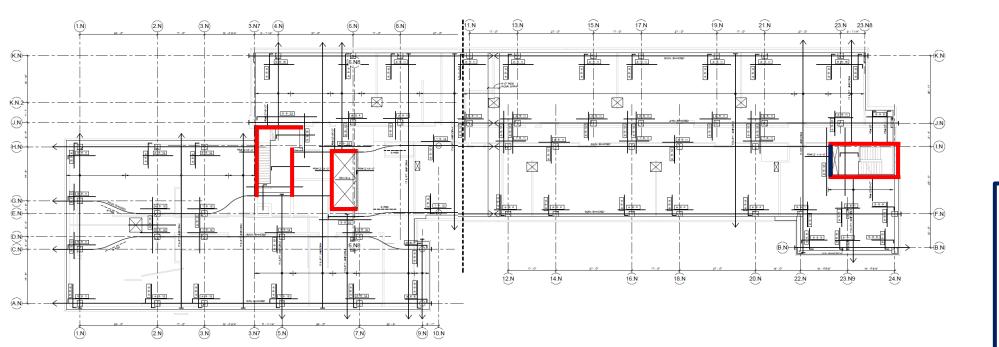
Building Introduction

Site Plan | Existing Gravity | Existing Lateral

Proposal

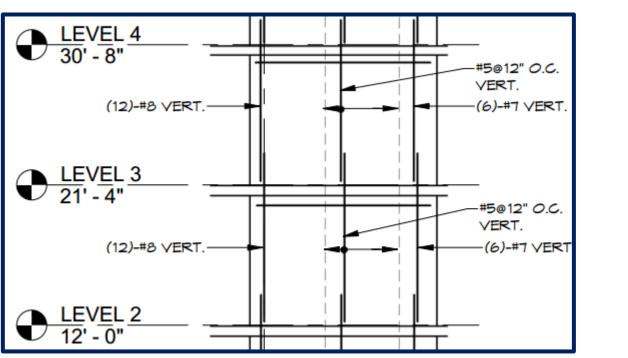
Purpose | Solution

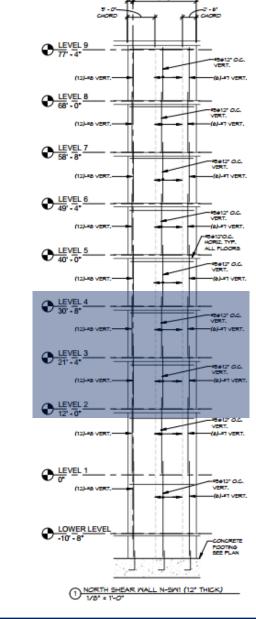
Redesigned Gravity System


Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR


Construction Breadth
Critical Path Schedule | Cost Analysis


Conclusion Comparison

Existing Lateral System

- (10) 12" thick concrete shear walls
- Located around stair and elevators
- Vary in height due to penthouse

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

<u>Proposal</u>

Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

Three main questions

- What could be bettered with the project by changing the structural system?
- Is this alternative feasible?
- What are the impacts?
 - Benefits & repercussions

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

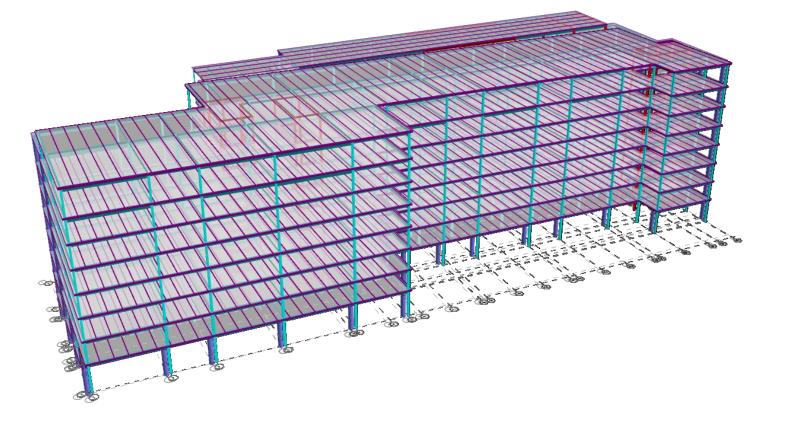
<u>Proposal</u>

Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System


Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

Goals

- Reduce project schedule
- Cost efficient system

Proposed System

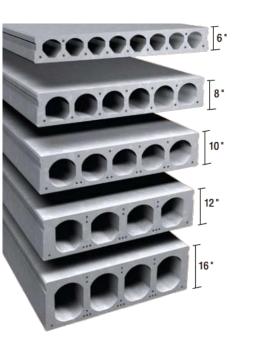
- Precast hollow core planks
- Non-composite steel
- Braced frames

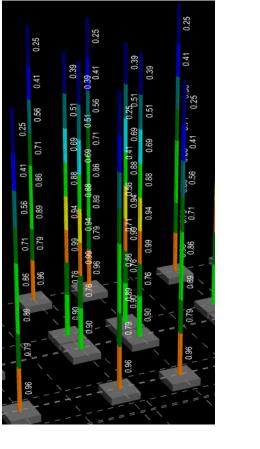
Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System

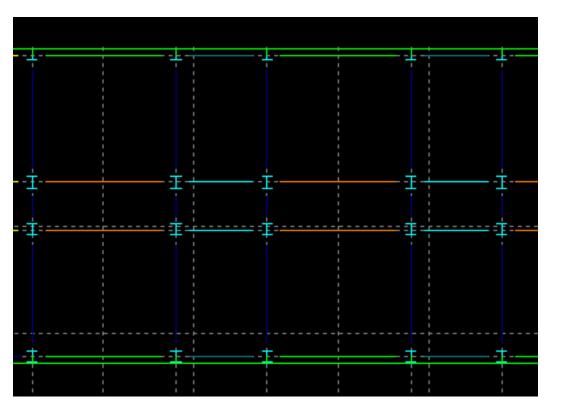
Hollow Core Plank | Steel Columns | Steel Beams


Redesigned Lateral System


Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

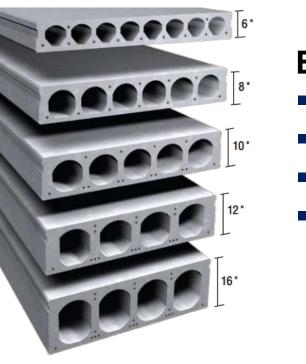

Hollow-Core Planks

Steel Columns

Non-Composite Beams

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

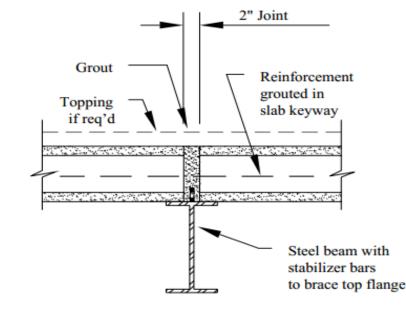
Proposal
Purpose | Solution

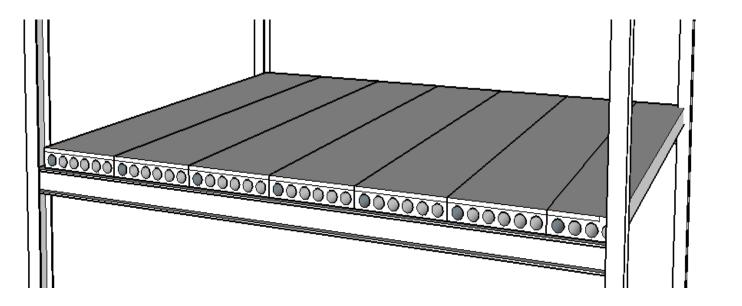

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System Buckling Restrained Braced Frames | COM/COR

Construction Breadth Critical Path Schedule | Cost Analysis


Conclusion Comparison



esy of oldcastleprecast.com

Elematic precast hollow core planks

- 8" thick, 2" topping
- 4' wide
- 5,000 psi concrete strength
 - 79psf
 - Reduced from 108 psf

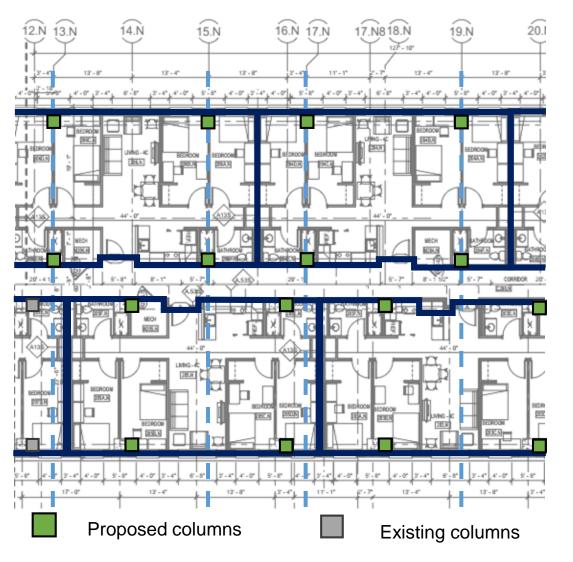
Connection detail

- Transfers diaphragm forces
- Lateral bracing
- Grout adds stiffness

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System

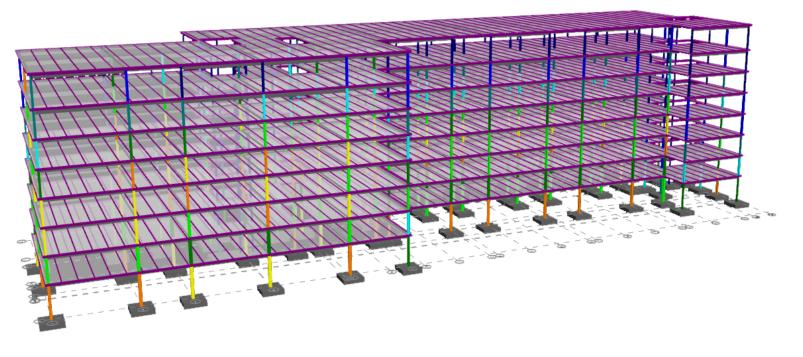

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison



Shifting columns

- Optimizing steel performance
- Minimal architectural changes

Column sizes

- Column depth constant through building height
- Spliced every two floors
- Exterior: W 12x53, W 12x40
- Interior: W 12x65, W 12x53

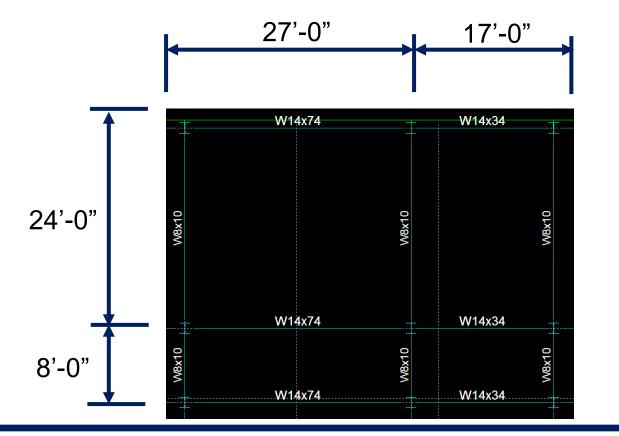
Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

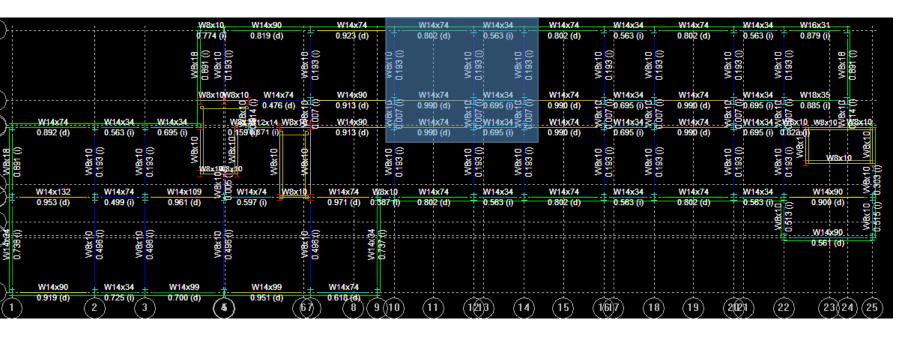
Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System


Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis


Conclusion
Comparison

Typical Bay

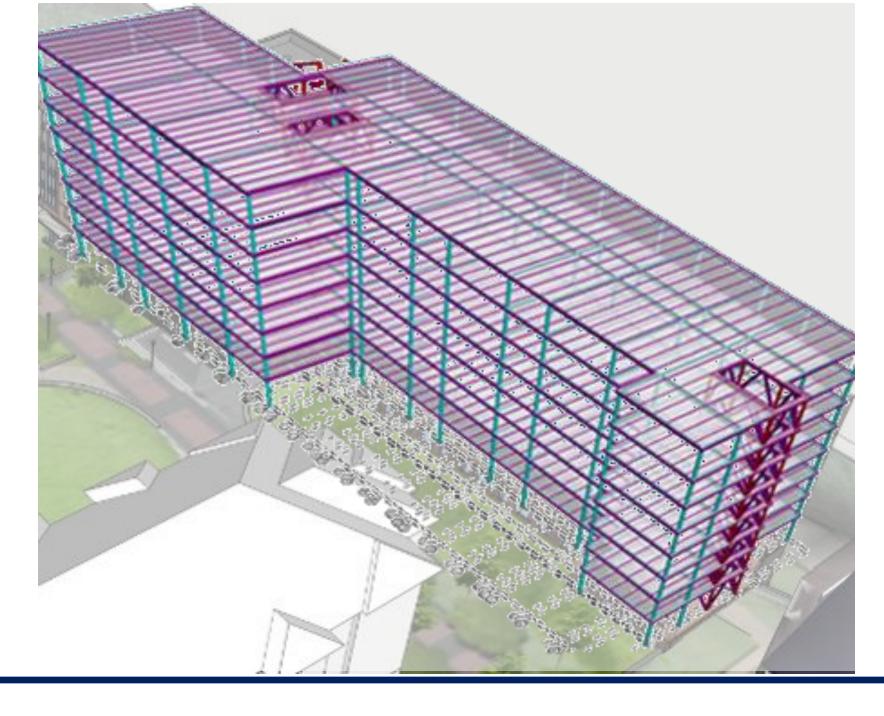
- Shifted columns eliminates transfer beams
- Beam depth 14" maintained throughout
- Deflection controlled majority of beam sizes
- Designed for 2 hour fire rating

Column sizes

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System


Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

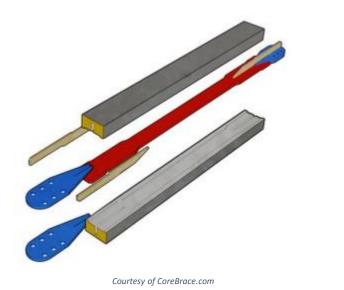
Construction Breadth
Critical Path Schedule | Cost Analysis

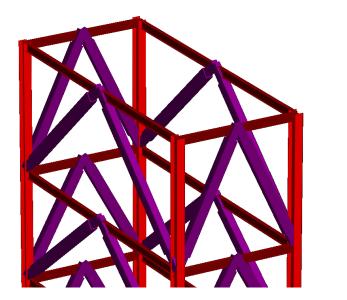
Conclusion Comparison

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System


Hollow Core Plank | Steel Columns | Steel Beams


Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

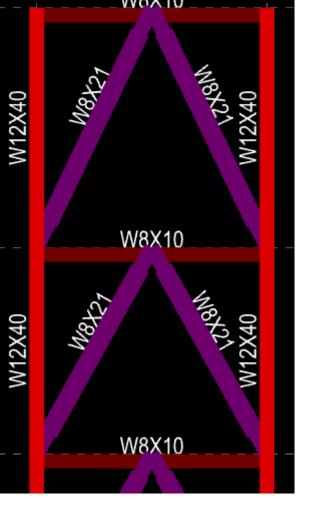
Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

Buckling Restrained Braced Frame Advantages

- Field tolerances
- Fast and efficient frame erection
- Response modification coefficient, R, of 8
- Provides member ductility
- Less imbalance of tension and compression forces

Selected Design


Columns: W 12x40

Beams: W 8x10

Braces: W 8x21

CoreBrace

- Stiffness factors vary
- Bolted lug connection

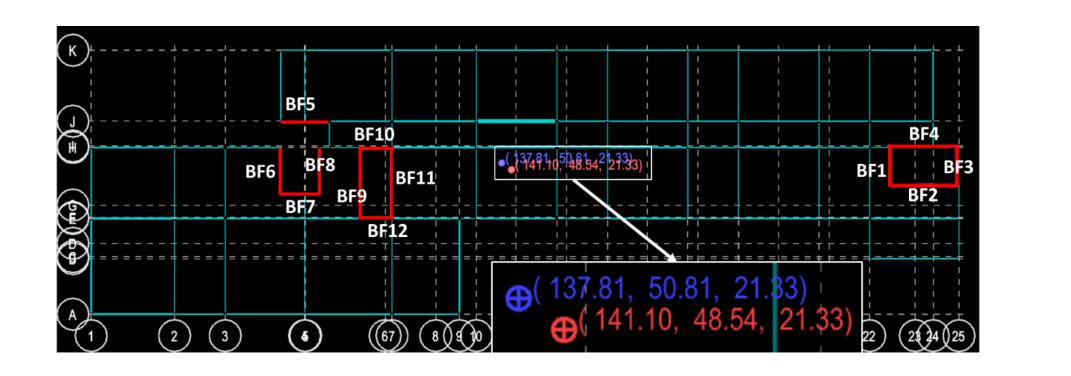
Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal

Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams


Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion

Comparison

Lateral Brace Location

- COM/COR 4ft apart, x-direction
 - Reducing lateral torsion
- Appropriate stiffness

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

Conclusion Comparison

Construction Breadth

- Is the schedule reduced?
- Has money been saved?
- What else can be done?

Acoustical Breadth

- Has sound transmission been improved?
- How are residents effected?

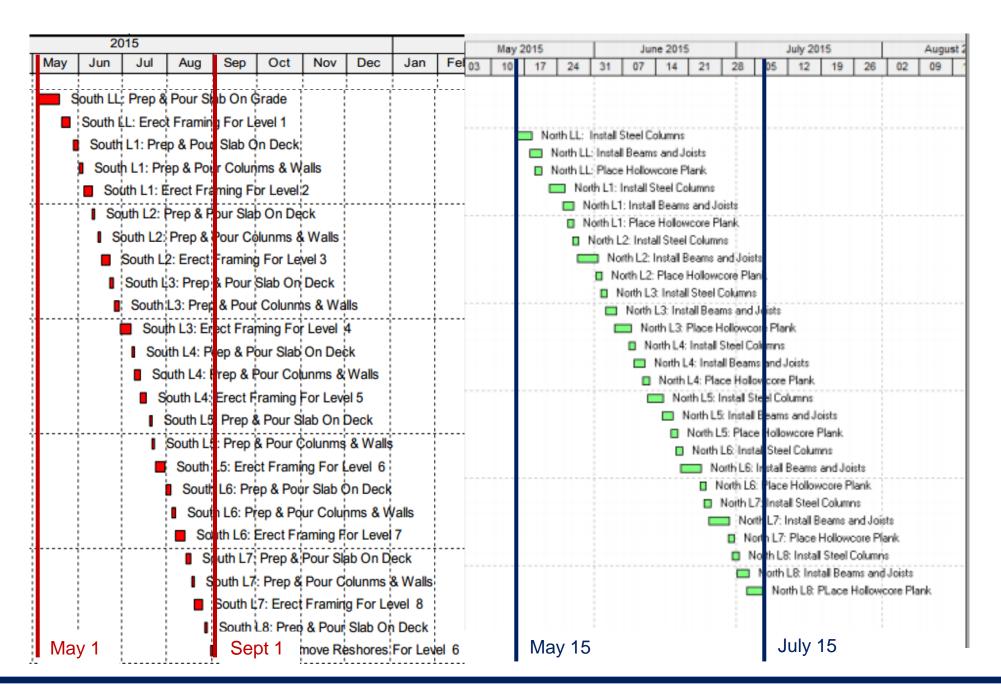
Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal

Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams


Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth

Critical Path Schedule | Cost Analysis

Conclusion Comparison

Critical Path Schedule Analysis

Original structural system: 7 Months

8 work days per floor

Proposed structural system: **3.5 Months**

7 work days per floor

Multiple floors a day

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

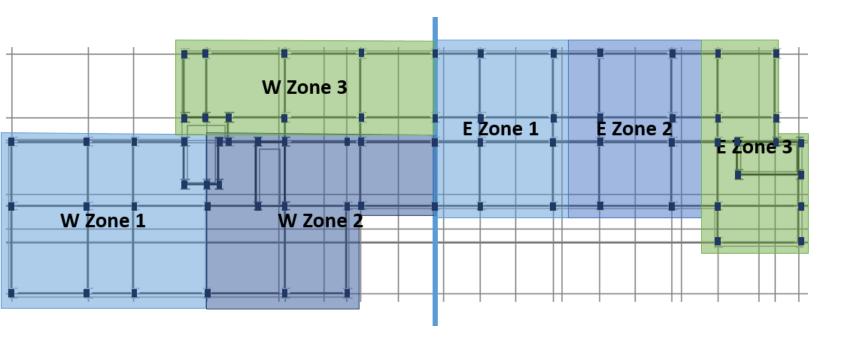
Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth


Critical Path Schedule | Cost Analysis

Conclusion Comparison

Techniques to fast track schedule

- Utilize sequencing to advance schedule
- Zoning assures an efficient work environment
- Constructability

Proposed Zoning Diagram

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System

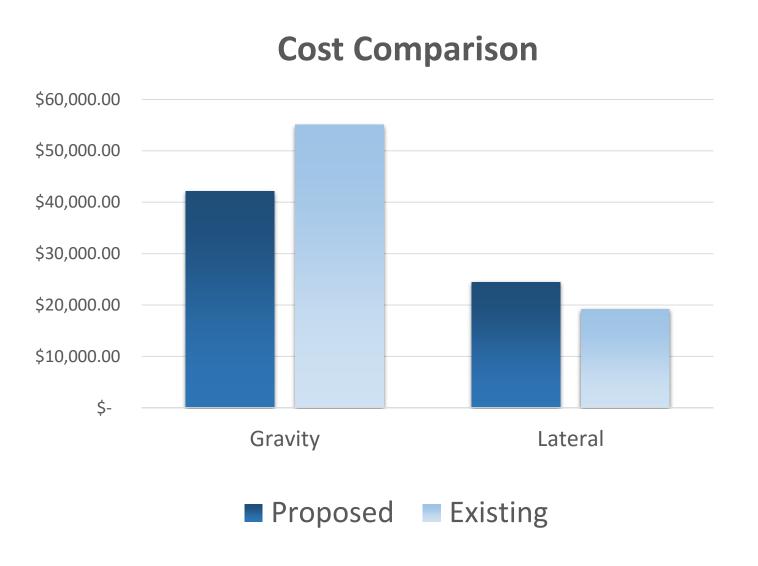
Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth

Critical Path Schedule | Cost Analysis


Conclusion Comparison

A	C ~ F+	Lateral
Area Under	Sq. Ft.	Element
Analysis	Gravity	Lateral
% Savings	23.5	-
% Increase	•	21.5

Net Savings	
15%	

Additional Savings

- Early Student Move-in
- Summer semester tuition

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal

Purpose | Solution

Redesigned Gravity System
Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth

Critical Path Schedule | Cost Analysis

Conclusion

Comparison

Benefits	Repercussions
Quick installation	Lateral brace cost
Off site production	Fire proofing
Structural integrity	Shifting architecture
Acoustical performance	

Resulting answers

- Lighter weight structure
- Stiffer lateral elements
- Schedule/cost reduction
- Reduced column sizes
- > Efficient
- Constructability
- Pros and Cons

Building Introduction
Site Plan | Existing Gravity | Existing Lateral

Proposal
Purpose | Solution

Redesigned Gravity System

Hollow Core Plank | Steel Columns | Steel Beams

Redesigned Lateral System

Buckling Restrained Braced Frames | COM/COR

Construction Breadth
Critical Path Schedule | Cost Analysis

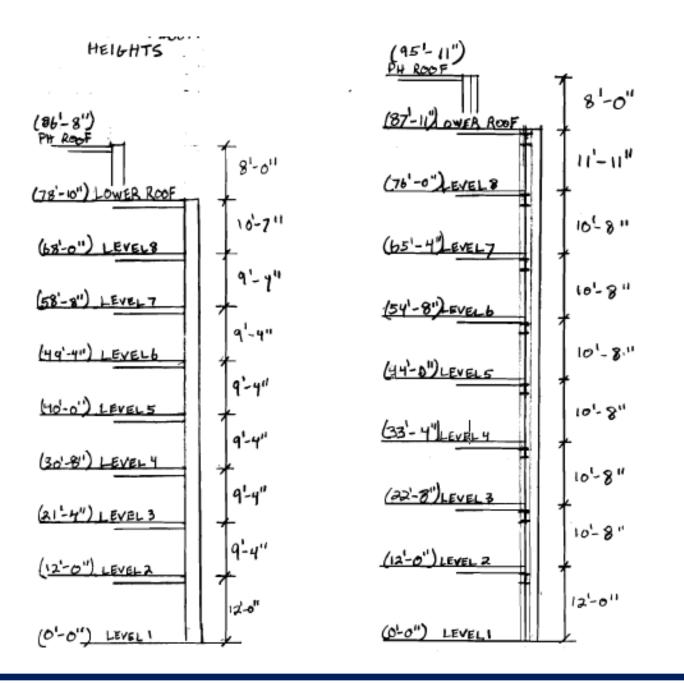
Conclusion Comparison

Acknowledgments

A very special thanks to:

- Dr. Aly Said, Thesis Advisor
- Professor Kevin Parfitt, AE Advisor
- Hope Furrer and the entire HFA staff
- Mr. R Timothy Sandruck, Towson University
 Construction Serviced
- My friends and family

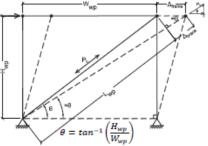
HOHOW CORE SLABS NEALEST MANUFACTURER - OLD CASTLE PRECAST, EDGEWOOD MI 4 USES ELEMATIC PLANKS - SPAN: 241-3" SECTION E8" X48" WITH 2" TOPPING LOADING: S. I. DL = 10PSF LL ROOMS= 40 PSF LL Corridors= 15PSF - (6) 76" LO LAX STRANDS 65PSF < - 25'Span, 139PSF / - 4' WIDE PLANKS - PROPERTIES: PLANK + TOPPING = 54+25 = 79 PSF fc = 5000 psi fc = 3000 psi A= 207, 2 F5 = 29,000 xsi faut 270,000ps; IC = 3,072 my bw=10in * CALCULATIONS REFERENCED FROM PCI MANUAL LOSS OF PRESTRESS • ELASTIC SHORTENING - 4ps fpu = 0.115 (270)= 31.05 1/3TRANO -P:= 0.6 (6) (31.05) = 111.78K1 -Mg= (24,25) (0,054)(4)= 140.5in-K - Fair : Keir (Pi + Pie) - Mac = 8.9 (111.78 + 111.78 (3) = 190,5(3) = 0.59 KS - ES = Kos Es Fair = (1.0) 29000 (0.59)

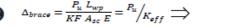

= 5.26 Ksi

```
· CONCRETE CREED
    - Mso = (24.25) (0.025+0.01)(4) = 123.5 K-in
    - fods = Msae = 123.5(3) = 0.12 Ks;
    - CR = Kar Es (fair-fas)
         = (2.0) (2000 (0.59-0.12) = 6.34Ksi
· SHRINKAGE OF CONCRETE
    -\frac{V}{S} = \frac{AREA}{PERINETER} = \frac{207in^2}{2(48+8)} = 1.85
    -USE RH = 70% (FIG 2.2.3.1)
      - SH = 8.2×10-6 Ksh Es (1-0.06 } ) X100-RH)
          = 8.2×100 (1.0) (24000) 6-006 (185) (100-70) = 6.34Ks;
· STEEL RELAXATION
      -Kre= 5000 5=0.04 (TABLE 2.2.3,1)
       - FSiFAN > C= 0,53
       -RE=[Kre-](SH+CR+ES)]C
            = \[ \frac{5000}{1000} - 0.04 \( 6.34 + 6.34 + 5.26 \) 0.53 = 2.27Ks;
· TOTAL LOSS AT MIDSPAN
      = 5.26+6.34+6.34+2,27= 20.21Ksi
     %= 20,21 (00) = 12.5%
```

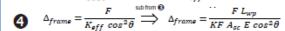
```
ACCOUNT FOR
LOSSES
  SERVICE LOAD STRESS
    -APSFSE = 0.6(6)(31.05)(1-0.135) = 97.8K
   -Mng = (24.25)2 (0.079)12 = 69.7 in-1/4
     Magne = (24,25) (0,065) 12 = 57,34 in -4.
  · TOP OF TOPPING
     $40p = 57,34(4)(13-5.41) (3605) = 0,44KSi
  · TOP OF PLANK
    Frop= 97.8 - 97.8(3)(3,97) + 69.7/4)(3,97) 5734/4)(0-5.41)
                                       = 0.781 Ks;
  · BOTTOM OF PLANK
    fbot = 0.47+ 0.737-0.7 - 57.34(4)(5.41) = 0.09(5)
 PERMISSIBLE COMPRESSION
     0,45 F'C = 0.45 (5000) = 2125K5i > 0,44K5i
     0.6 fic = 0.6 (5000) = 3.0 KSi > 0.78 KSi
  PERMISSIBLE TENSION
     7.5 \fic = 7.5 \5000 = = 53 Ksi > 0.09 Ksi
FLEXURAL STRENGTH
   Wu=1.2(0.079+001)+1.6(0.055) = 0.195KSF
   Mu= 24.25 Co1195) = 14.3 +++/4 = 57.3 ++/519
· B = 0.85 - (5000-3500) 0.05 = 0.775
 PA= Aps = 6/0.115) = 0.0021
 8p=0128 (Low lax)
- 1ps= 270 [1- 0.78 (0.0021 270)] = 258,9' Ks;
```

```
- wp = Pp Fps = 0,0021 (259.9) = 0.109 < 0.36 B,
- a = Aps fps = 6(0.115)(258.4) = 0.88" V
- PMn= 0.9 (6) (0.115) (258.9) (7-0,88) = 101,31 FLX
     Mu = 57.3 < 101.3 ✓
- OMO > 1,2 Mar
    Fbot = 97.8 + 97.8 (3)(5) = 1.42KS;
   Mcr = 3024 (1.42 + 7.5/5000) = 90.85 FK
                                                     DEFLECTION
  Vc= min { [0.6 JFC + 700 Yudp | bwdp = [0.6 J5000 + 7006] (b)(
            (0.64Fc + 700 bwdp = 43308Kip
           (SVFE budp = 5 15000 (10) (2) = 2062.4Kif
   Vu: W(景-x)
     W=[1.2(54+10)+1.6(55) 4' = 65921/5+
   V = wl = 0.6592(24) = 7.9 Kip
          Vu < Ve /
```


```
Initial Camber
   POL2 - 5W.14
8ESI 384EI
(1-0.125)(111,78)(3)(24,25 x12) 5(3.5)(0.074)(24,25) (1728)
8 (3250) (3024) 384(2250) (2024)
    = 0.316" - 0.218" = 0.098
  LONG TERM CAMBER (table 2.4.1)
        2,2(0.316) - 2,4(0.218) = 0.172" ... 4" camber
       P= Atopping (strain) modifies)
        =48"(2")(0.00025)(3$05)
      P= 86.52 = 37.6K CTABLE 2.4.1)
          e= 9"-4= 5"
      M=Pe= (37.6) (5) = 188.1Kin
 VA = Me2 = (88.1/24.25,x32)2 = 0.14
   L = 24.25×12 = 0.81" > 0.14" V
```



BRBF Design procedure


- Define appropriate BRB modeling
- Determine required brace strength
- Check drift
- Determine brace displacements
- Conduct tests and add stiffness factors
- Calculate required strength of columns, beams and connections based on BRB strengths

BRACE STIFFNESS CALCULATIONS

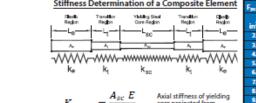
$$\Delta_{frame} = \frac{\Delta_{brace}}{cos\theta} \stackrel{\text{Subtrom } \Theta}{\Longrightarrow} \Delta_{frame} = \frac{P_u}{K_{eff} cos\theta} \stackrel{\text{Subtrom } \Theta}{\Longrightarrow}$$

$$_{ame} = \frac{2\Phi(^{y}/_{E}) H_{wp}}{KF \sin 2\theta}$$

$$ry Drift = \frac{\Delta_{frame}}{H} = \frac{2\Phi(^{Fy}/_{E})}{H}$$

factor of safety resulting from the ratio of the required A_{sc} to the provided A_{sc}

The effective horizontal stiffness can be summarized by the following statement

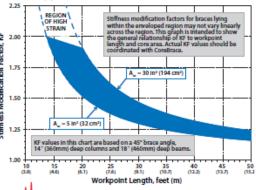

$$\Delta_{frame} = F/K_{frame} \Longrightarrow Subfrom \Theta$$

$$K_{frame} = F/K_{frame} \Longrightarrow Subfrom \Theta$$

 $K_{frame} = K_{eff} \cos^2 \theta$

For design assistance please contact CoreBrace

5789 West Wells Park Road West Jordan, UT 84081 801.280.0701 www.corebrace.com



If k_e and k_t are assumed rigid, the above equation for KF simplifies to

$$KF \cong \frac{L_{wp}}{L_{sc}} = \frac{1}{0.6} = 1.67 \Longrightarrow$$

 $K_{eff} \cong 1.67K_{sc_wp}$

COREBRACE

APPROXIMATE STIFFNESS MODIFICATION FACTORS, KF1,2,7

	ryc – 30 ka (202 mra) Ddy Widti, it (iii)										
Au ²	Po and	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)
in ² (cm ²)	Py_mtal* kip (kN)		SIN	GLE DIAGO	NAL				CHEVRON/	1	
2.0 (13)	68 (306)	1.50	1.44	1.40	1.36	1.34	1.50	1.47	1.44	1.42	1.40
3.0 (19)	103 (448)	1.48	1.42	1.38	1.35	1.33	1.48	1.45	1.42	1.40	1.38
4.0 (26)	137 (613)	1.46	1.41	1.37	1.34	1.32	1.46	1.43	1.41	1.38	1.37
5.0 (32)	171 (754)	1.52	1.46	1.41	1.37	1.35	1.52	1.49	1.46	1.43	1.41
6.0 (39)	205 (919)	1.60	1.52	1.46	1.41	1.38	1.60	1.56	1.52	1.49	1.46
7.0 (45)	239 (1060)	1.66	1.56	1.50	1.45	1.41	1.66	1.61	1.56	1.53	1.50
8.0 (52)	274 (1225)	1.67	1.57	1.50	1.45	1.41	1.67	1.61	1.57	1.53	1.50
9.0 (58)	308 (1367)	1.64	1.55	1.48	1.44	1.40	1.64	1.59	1.55	1.51	1.48
10.0 (65)	342 (1532)	1.79	1.66	1.57	1.50	1.46	1.79	1.71	1.66	1.61	1.57
11.0 (71)	376 (1673)	1.80	1.66	1.57	1.51	1.46	1.80	1.72	1.66	1.61	1.57
12.0 (77)	410 (1814)	1.81	1.67	1.58	1.51	1.47	1.81	1.73	1.67	1.62	1.58
14.0 (90)	479 (2121)	1.65	1.56	1.49	1.45	1.41	1.65	1.60	1.56	1.52	1.49
16.0 (103)	547 (2427)	1.62	1.54	1.48	1.43	1.40	1.62	1.58	1.54	1.50	1.48
18.0 (116)	616 (2733)	1.66	1.57	1.50	1.45	1.42	1.66	1.61	1.57	1.53	1.50
20.0 (129)	684 (3040)	1.63	1.55	1.49	1.44	1.41	1.63	1.59	1.55	1.51	1.49
22.0 (142)	752 (3346)	1.83	1.69	1.60	1.54	1.49	1.83	1.75	1.69	1.64	1.60
24.0 (155)	821 (3652)	1.80	1.67	1.58	1.52	1.48	1.80	1.73	1.67	1.62	1.58
26.0 (168)	889 (3959)	1.77	1.65	1.57	1.51	1.47	1.77	1.70	1.65	1.61	1.57
28.0 (181)	958 (4265)	1.98	1.80	1.69	1.61	1.55	1.98	1.88	1.80	1.74	1.69
	1026 (4571)	1.95	1.78	1.67	1.60	1.54	1.95	1.86	1.78	1.72	1.67
Workpoint	Length, ft (m)	20.5 (6.3)	24.4 (7.4)	28.7 (8.7)	33.1 (10.0)	37.7 (11.5)	20.5 (6.3)	22.4 (6.8)	24.4 (7.4)	26.5 (8.1)	28.7 (8.7)
				Bay Widt W18×97		Bay Width					
			(4.3m) W14x109	W18×97	W14c109		14ff (4.3m)	WI4KIDS	W18:47	\times	W14×109

F _{yec} = 38 ksi	(262 MPa)					Bay Wid	lt	h, ft (m)					
A _{sc} ²	P _{v sodal} ⁴	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)		30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)	
in² (cm²)	kip (kN)		SIN	GLE DIAGO	NAL					CHEVRON/V			
2.0 (13)	68 (306)	1.43	1.39	1.35	1.32	1.30	П	1.43	1.41	1.39	1.37	1.35	
3.0 (19)	103 (448)	1.41	1.37	1.34	1.31	1.29]	1.41	1.39	1.37	1.35	1.34	
4.0 (26)	137 (613)	1.40	1.36	1.32	1.30	1.28		1.40	1.38	1.36	1.34	1.32	S
5.0 (32)	171 (754)	1.45	1.40	1.36	1.33	1.31]	1.45	1.43	1.40	1.38	1.36	TORY
6.0 (39)	205 (919)	1.52	1.46	1.41	1.37	1.34]	1.52	1.49	1.46	1.43	1.41	0
7.0 (45)	239 (1060)	1.57	1.49	1.44	1.40	1.37]	1.57	1.53	1.49	1.46	1.44	R
8.0 (52)	274 (1225)	1.57	1.50	1.44	1.40	1.37]	1.57	1.53	1.50	1.47	1.44	\prec
9.0 (58)	308 (1367)	1.55	1.48	1.43	1.39	1.36		1.55	1.51	1.48	1.45	1.43	-
10.0 (65)	342 (1532)	1.67	1.57	1.50	1.45	1.41]	1.67	1.62	1.57	1.54	1.50	HEIG
11.0 (71)	376 (1673)	1.68	1.58	1.51	1.45	1.41]	1.68	1.63	1.58	1.54	1.51	
12.0 (77)	410 (1814)	1.69	1.59	1.51	1.46	1.42		1.69	1.63	1.59	1.55	1.51	G
14.0 (90)	479 (2121)	1.56	1.49	1.44	1.40	1.37		1.56	1.52	1.49	1.46	1.44	H
16.0 (103)	547 (2427)	1.53	1.47	1.42	1.38	1.35]	1.53	1.50	1.47	1.44	1.42	=
18.0 (116)	616 (2733)	1.57	1.49	1.44	1.40	1.37]	1.57	1.53	1.49	1.47	1.44	
20.0 (129)	684 (3040)	1.55	1.48	1.43	1.39	1.36		1.55	1.51	1.48	1.45	1.43	=
22.0 (142)	752 (3346)	1.70	1.60	1.53	1.48	1.44		1.70	1.65	1.60	1.56	1.53	6
24.0 (155)	821 (3652)	1.68	1.58	1.51	1.46	1.43		1.68	1.63	1.58	1.55	1.51	#
26.0 (168)	889 (3959)	1.65	1.57	1.50	1.45	1.42]	1.65	1.61	1.57	1.53	1.50	4
28.0 (181)	958 (4265)	1.82	1.69	1.60	1.54	1.49		1.82	1.75	1.69	1.65	1.60	*
30.0 (194)	1026 (4571)	1.80	1.68	1.59	1.53	1.48		1.80	1.73	1.68	1.63	1.59	9
Workpoint L	ength, ft (m)	21.9 (6.7)	25.6 (7.8)	29.7 (9.0)	34.0 (10.4)	38.5 (11.7)		21.9 (6.7)	23.7 (7.2)	25.6 (7.8)	27.6 (8.4)	29.7 (9.0)	9m)
		422	(4.9m) W14c109	Bay Widt W18×97 W18×97	WIACIOS			16ft (4.9m)	WHector	Bay Widt		W14x109	

Where a KF is not given in the table, the brace orientation may result in an unacceptable level of strain. Contact CoreBrace for project specific details. 5. The area of the "Connection Region" (WP to Tip of gusset) is taken to be on average 5x stiffer than the "End Region" of the brace, which results in a semi-rigid offset APPROXIMATE STIFFNESS MODIFICATION FACTORS, KF1,2,7

c – 30 sa	(202 mra)					Day WILL		II, IL (III)					
A _{sc} ¹	Py_actal*	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)		30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)	ı
r ² (cm²)	kip (kN)		SIN	GLE DIAGO	NAL					CHEVRONA	,		ı
2.0 (13)	68 (306)	1.40	1.35	1.32	1.29	1.27	П	1.40	1.36	1.35	1.33	1.32	ı
3.0 (19)	103 (448)	1.38	1.33	1.30	1.28	1.26		1.38	1.35	1.33	1.32	1.30	ı
1.0 (26)	137 (613)	1.37	1.32	1.29	1.27	1.25		1.37	1.33	1.32	1.30	1.29	S
5.0 (32)	171 (754)	1.42	1.36	1.33	1.30	1.28		1.42	1.38	1.36	1.34	1.33	\dashv
6.0 (39)	205 (919)	1.48	1.41	1.37	1.33	1.31		1.48	1.43	1.41	1.39	1.37	0
7.0 (45)	239 (1060)	1.52	1.44	1.40	1.36	1.33		1.52	1.47	1.44	1.42	1.40	RΥ
3.0 (52)	274 (1225)	1.53	1.44	1.40	1.36	1.33		1.53	1.47	1.44	1.42	1.40	\prec
A.O (58)	308 (1367)	1.51	1.43	1.38	1.35	1.32		1.51	1.45	1.43	1.41	1.38	I
0.0 (65)	342 (1532)	1.61	1.51	1.45	1.41	1.37	П	1.61	1.55	1.51	1.48	1.45	=
1.0 (71)	376 (1673)	1.62	1.52	1.46	1.41	1.38		1.62	1.55	1.52	1.48	1.46	EIG
2.0 (77)	410 (1814)	1.63	1.52	1.46	1.41	1.38		1.63	1.56	1.52	1.49	1.46	G
4.0 (90)	479 (2121)	1.52	1.43	1.39	1.36	1.33		1.52	1.46	1.43	1.41	1.39	I
5.0 (103)	547 (2427)	1.49	1.42	1.38	1.35	1.32		1.49	1.44	1.42	1.40	1.38	⊟
3.0 (116)	616 (2733)	1.52	1.44	1.40	1.36	1.34		1.52	1.47	1.44	1.42	1.40	
1.0 (129)	684 (3040)	1.50	1.43	1.38	1.35	1.33		1.50	1.45	1.43	1.40	1.38	=
2.0 (142)	752 (3346)	1.64	1.53	1.47	1.43	1.39		1.64	1.57	1.53	1.50	1.47	8ft
4.0 (155)	821 (3652)	1.62	1.52	1.46	1.42	1.38		1.62	1.55	1.52	1.49	1.46	#
5.0 (168)	889 (3959)	1.60	1.50	1.45	1.41	1.38		1.60	1.53	1.50	1.47	1.45	~
8.0 (181)	958 (4265)	1.75	1.61	1.54	1.48	1.44		1.75	1.66	1.61	1.57	1.54	5.
	1026 (4571)	1.73	1.60	1.53	1.47	1.43		1.73	1.64	1.60	1.56	1.53	5
orkpoint L	ength, ft (m)	23.4 (7.1)	26.9 (8.2)	30.8 (9.4)	35.0 (10.7)	39.4 (12.0)		23.4 (7.1)	25.1 (7.7)	26.9 (8.2)	28.8 (8.8)	30.8 (9.4)	3
				Bay Widt	h ,		П		·	Bay Widt	h ,		=
			٦	W18:497	7		П		- 1	W18×97	1		ı
		-	-A-	William	_		П	_	▼- -	WIRESH		-	ı
			15.5m)		- N		П	18 gr (% Sm)		/	`' I	W 14:01	ı
			-6,1 ₹		W14×		П	- 4	↓ š /	``\\	\sim	ŝ	
				W18×97	$\overline{}$		П	_	_	W18×97	$\overline{}$		

= 38 ks	(262 MPa)					Bay Wld	th, i	ft (m)						
A _{sc} ¹ (cm²)	Py actal	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	1	30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)		
² (cm²)	kip (kN)		SIN	GLE DIAGO	NAL		Т			CHEVRONA				
2.0 (13)	68 (306)	1.38	1.31	1.29	1.27	1.25		1.38	1.33	1.31	1.30	1.29		
1.0 (19)	103 (448)	1.36	1.30	1.28	1.26	1.24		1.36	1.32	1.30	1.29	1.28		
1.0 (26)	137 (613)	1.35	1.29	1.27	1.25	1.23		1.35	1.31	1.29	1.28	1.27	S	
i.0 (32)	171 (754)	1.40	1.33	1.30	1.28	1.26		1.40	1.35	1.33	1.31	1.30	\dashv	
i.0 (39)	205 (919)	1.45	1.37	1.33	1.31	1.28		1.45	1.39	1.37	1.35	1.33	o'	- 1
(45)	239 (1060)	1.49	1.40	1.36	1.33	1.30	\perp	1.49	1.43	1.40	1.38	1.36	ŘΥ	
1.0 (52)	274 (1225)	1.50	1.40	1.36	1.33	1.31		1.50	1.43	1.40	1.38	1.36	~	
1.0 (58)	308 (1367)	1.48	1.39	1.35	1.32	1.30		1.48	1.41	1.39	1.37	1.35	I	
0.0 (65)	342 (1532)	1.57	1.46	1.41	1.37	1.34		1.57	1.50	1.46	1.43	1.41	=	
1.0 (71)	376 (1673)	1.58	1.46	1.42	1.38	1.35		1.58	1.50	1.46	1.44	1.42		
2.0 (77)	410 (1814)	1.59	1.47	1.42	1.38	1.35		1.59	1.51	1.47	1.44	1.42	G	٠.
4.0 (90)	479 (2121)	1.49	1.39	1.36	1.33	1.30		1.49	1.42	1.39	1.37	1.36	I	
i.0 (103)	547 (2427)	1.47	1.38	1.34	1.32	1.29		1.47	1.41	1.38	1.36	1.34	ਜ਼	
1.0 (116)	616 (2733)	1.49	1.40	1.36	1.33	1.31		1.49	1.43	1.40	1.38	1.36		-
1.0 (129)	684 (3040)	1.48	1.38	1.35	1.32	1.30		1.48	1.41	1.38	1.37	1.35	2	
1.0 (142)	752 (3346)	1.61	1.48	1.43	1.39	1.36	\perp	1.61	1.52	1.48	1.45	1.43	of	П
LO (155)	821 (3652)	1.59	1.46	1.42	1.38	1.35		1.59	1.50	1.46	1.44	1.42	7	
.0 (168)	889 (3959)	1.57	1.45	1.41	1.37	1.34		1.57	1.49	1.45	1.43	1.41		
	958 (4265)	1.70	1.55	1.49	1.44	1.40		1.70	1.60	1.55	1.52	1.49	6.	1
	1026 (4571)	1.68	1.53	1.48	1.43	1.40	\perp	1.68	1.58	1.53	1.50	1.48	_	
ırkpoint L	ength, ft (m)	25.0 (7.6)	28.3 (8.6)	32.0 (9.8)	36.1 (11.0)	40.3 (12.3)	29	5.0 (7.6)	26.6 (8.1)	28.3 (8.6)	30.1 (9.2)	32.0 (9.8)	<u>m</u>	
			(6.1m) (6.1m) WH-211	Bay Widt	11204			20ft (6.1m)	M14c211	Bay Widt		WHATI	•	
			~ ↓ ≥		≥		1	2,	v ≥1/	``\ '		3		

└CoreBrace~~

APPROXIMATE CASING SIZES" IN (MM)

		Stres shown a	re representativ	re of typical Bit	S sizes. Informa	tion on intermed	flate and largers	izes is available	upon request.		
c= 38 ksi	(262 MPa)					Bay Wld	th, ft (m)				
A _{sc} ¹ 2(cm ²)	Py_mail	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)
	kíp (kN)			GLE DIAGO					CHEVRON/		
1.0 (13)	68 (306)	t6 (t152.4)	t6 (t152.4)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t6 (t152.4)	t6 (t152.4)		t8 (t203.2)	t8 (t203.2)
1.0 (19)	103 (448)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
1.0 (26)	137 (613)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
i.0 (32)	171 (754)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t10 (t254.0)	t10 (t254.0)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
.0 (39)			t10 (t254.0)					t10 (t254.0)			
(45)	239 (1060)	t10 (t254.0)						t10 (t254.0)			
1.0 (52)	274 (1225)	t12 (t304.8)		t12 (t304.8)				t12 (t304.8)		t12 (t304.8)	
1.0 (58)			t12 (t304.8)					t12 (t304.8)			
0.0 (65)		t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
1.0 (71)	376 (1673)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
2.0 (77)	410 (1814)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
4.0(90)	479 (2121)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
i.0 (103)	547 (2427)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
1.0 (116)		t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
1.0 (129)	684 (3040)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
1.0 (142)	752 (3346)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)
1.0 (155)	821 (3652)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)
.0 (168)	889 (3959)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)
1.0 (181)	958 (4265)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)
		t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)
ırkpoint L	ength, ft (m)	20.5 (6.3)	24.4 (7.4)	28.7 (8.7)	33.1 (10.1)	37.7 (11.5)	20.5 (6.3)	22.4 (6.8)	24.4 (7.4)	26.5 (8.1)	28.7 (8.7)
			le.	Bay Widt	h J			le-	Bay Widt	h J	
t=squa	era tuba		٦		1			_		1	
(round		of 8 Wilest									
casing a	also		(4.3m) W14x109		W 14×308		4.3mg	(M×100	/	\.^^	W 14×100
availab	le)	,	÷ ₹ ↓ ₹		ž		- 2	J ≨I ∕	~\	/ \	ž *
			_ -	W18:97			_		W18::97	\rightarrow	

ksi	(262 MPa)					Bay Wld	th, ft (m)				
	Py_actal ⁴	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)
9	kip (kN)		SIN	GLE DIAGO	NAL				CHEVRON/\	1	
)	68 (306)	t6 (t152.4)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t6 (t152.4)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
)	103 (448)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
	137 (613)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t10 (t254.0)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
	171 (754)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t10 (t254.0)	t10 (t254.0)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)
)	205 (919)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t12(t304.8)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)
)		t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)
)	274 (1225)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
)	308 (1367)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
0		t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
0	376 (1673)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
)	410 (1814)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
0	479 (2121)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
3)	547 (2427)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
5)	616 (2733)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
9)	684 (3040)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)
2)	752 (3346)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)
5)	821 (3652)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)
8)	889 (3959)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)
1)	958 (4265)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)
4)	1026 (4571)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)
ıtL	angth, ft (m)	21.9 (6.7)	25.6 (7.8)	29.7 (9.0)	34.0 (10.4)	38.5 (11.7)	21.9 (6.7)	23.7 (7.2)	25.6 (7.8)	27.6 (8.4)	29.7 (9.0)
idı	re tube sipe Iso e)		(4.9m) (4.9m) w14x109	Bay Widt	W14×109		16ft (4.9m)	W14x809	Bay Widt	<u></u>	W14×109

NOTES: 1. CoreBrace BRB Casing Sizes are approx square minimums for the indicated frame geometry and beam/column sizes. Different beam/column sizes will affect brace length and possibly Casing size. More economical sizes may be used unless specifically required otherwise. Round casings of similar size are also available.

- sength and possibly casing size. More economical sizes may be used unless specifically required otherwise. Round casings of similar sizes are also available.

 2. Indicated one area is minimum cross sectional area of yielding portion of 898 core.

 3. P_{x and} is the calculated yield rotes of the 898 equal to et 97_m, based on the lower-bound of the yield stress range.

 Typ yield stress range = 42 kd s 4 to 1200 MPs = 25MPs].

 Where calling state is controlled by this up alternate core compliarations (width x thickness) may allow for reduced casing sizes, on a project specific basis. Contact Contilators for details.

 Casing buckling choics included a FS of 1.3 accounting for code prescribed phil factors and casing initial out-of-straightness. Where casing size is controlled by buckling, alternate casing configurations must maintain the same min moment of linerita about the core critical asis. Contact Constract for existance of with alternation configurations.

- atternate configurations.

 Brace and cashing stars other than those shown are available upon request.

 This table was created by considering overstrength at 2% story drift as stopulsed by ASC 341-10. For other story drifts, values may be different.

 Recalling stars in table are intended for schematic design only contact Constituctor for project specific stars.

APPROXIMATE CASING SIZES" IN (MM) (CONT'D)

Sizes shown are representative of typical BRB sizes. Information on intermediate and larger sizes is available upon request. _{nc} = 38 ksi (262 MPa) Bay Width, ft (m) 15 (4.6) 20 (6.1) 25 (7.6) 30 (9.1) 35 (10.7) 30 (9.1) 35 (10.7) 40 (12.2) 45 (13.7) 50 (15.2) 8.0 (52) 274 (1225) 9.0 (58) 308 (1367) 1.0 (71) 376 (1673) 2.0 (77) 410 (1814) 16.0 (103) 547 (2427) 18.0 (116) 616 (2733) 20.0 (129) 684 (3040) 22.0 (142) 752 (3346) 24.0 (155) 821 (3652) t 26.0 (168) 889 (3959) t1 30.0 (194) 1026 (4571) t1 Workpoint Length, ft (m) t = square tube (round pipe casing also available)

F _{pc} = 38 ks	i (262 MPa)					Bay Wld	th, ft (m)				
A _c ¹	Py_actal ⁴	15 (4.6)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	30 (9.1)	35 (10.7)	40 (12.2)	45 (13.7)	50 (15.2)
in² (cm²)	kip (kN)			GLE DIAGO					CHEVRON/\		
2.0 (13)	68 (306)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)		t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2
3.0 (19)	103 (448)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2					
4.0 (26)	137 (613)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t10 (t254.0)	t10 (t254.0)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2
5.0 (32)	171 (754)	t8 (t203.2)	t8 (t203.2)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t8 (t203.2)	t8 (t203.2)	t8 (t203.2)	t10 (t254.0)	t10 (t254.
6.0 (39)	205 (919)		t10 (t254.0)						t10 (t254.0)		
7.0 (45)	239 (1060)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t12 (t304.8)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.0)	t10 (t254.
8.0 (52)	274 (1225)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.)					
9.0 (58)	308 (1367)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.					
10.0 (65)	342 (1532)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.					
11.0 (71)	376 (1673)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.					
12.0 (77)	410 (1814)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.
14.0 (90)	479 (2121)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.
16.0 (103)	547 (2427)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304
18.0 (116)	616 (2733)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355
20.0 (129)	684 (3040)	t12 (t304.8)	t12 (t304.8)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t12 (t304.8)	t14 (t355
22.0 (142)	752 (3346)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355					
24.0 (155)	821 (3652)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t16 (t406.4)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355
26.0 (168)	889 (3959)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t16 (t406.4)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355.6)	t14 (t355
28.0 (181)	958 (4265)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.					
30.0 (194)	1026 (4571)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.4)	t16 (t406.					
Workpointl	.ength, ft (m)	25.0 (7.6)	28.3 (8.6)	32.0 (9.8)	36.1 (11.0)	40.3 (12.3)	25.0 (7.6)	26.6 (8.1)	28.3 (8.6)	30.1 (9.2)	32.0 (9.8
t=squi (round casing availab	also		WHACH	W18×97	WH WILL		20ft (6.1m)	MHW III	Bay Widt	<u></u>	W14:011

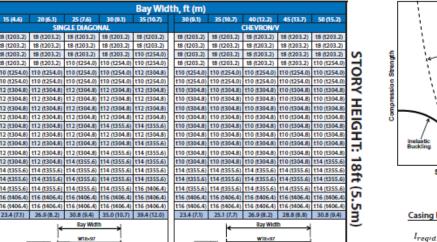
For design assistance please contact CoreBrace:

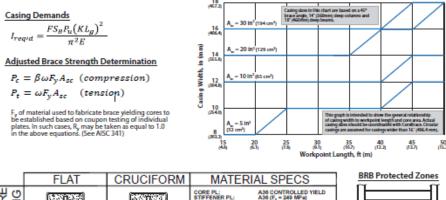
5789 West Wells Park Road West Jordan, UT 84081 801.280.0701 www.corebrace.com

BOLTED LUG BRACE AND CASING INFORMATION

Elastic (Euler) Buckling

Sienderness

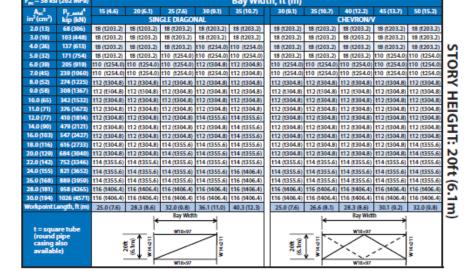

1st-Mode Euler Buckling

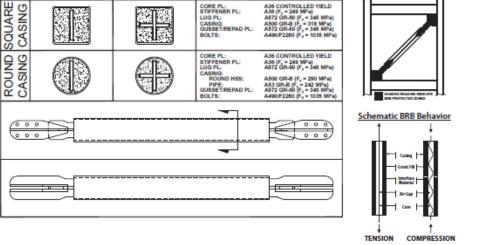

nth-Mode Euler Buckling

where $\ell = L/\eta$

 $P_{cr} = \frac{\pi^2 EI}{(KL)^2} \quad F_{cr} = \frac{\pi^{-} L}{\left(\frac{KL}{r}\right)^2}$

 $P_{cr_n} = n^2 P_{cr} \qquad F_{cr_n} = n^2 F_{cr}$

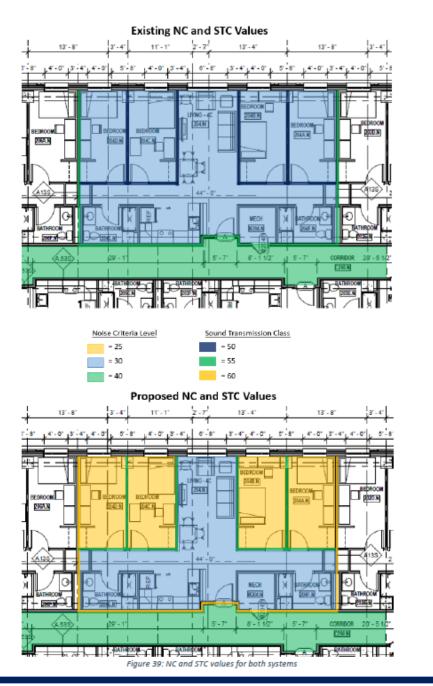

P₁ P₂=4P₁ P₃=9P₁


n=2

n=1

Approximate Casing Size

n=3


WBS Task	Sub-task Description	Qty.	Units	Production Rate	Crew hours	Crew Cost / hr	# workers on crew	total labor hours
Overhead rough-in	Domestic Water	100	LF	0.25	25	\$98.30	2	50
Precast Slab Planks	Hollow, 8" thick	1056	S.F.	0.023	24.288	235.45	1	24.288
Finishing Floors	Integral topping and finish, 2" thick	1056	S.F.	0.08	84.48	189.05	1	84.48
Structural Steel Members	Beam, W 14 x 82	88	L.F.	0.078	6.864	135.5	1	6.864
Structural Steel Members	Beam, W 8 x 10	72	L.F.	0.093	6.696	172	1	6.696
Columns Structural	W shape, 12 x 40	9.33	L.F.	0.054	0.50382	102.5	1	0.50382
Columns Structural	W shape, 12 x 53	77.3	L.F.	0.057	4.4061	135.5	1	4.4061
Structural Steel Members	Beam, W 8 x 10	181	L.F.	0.093	16.8051		1	16.8051

Existing Gravity Syster	n			
Building Element	Quantity	Unit	Unit Cost	Total Cost
Prestressing Steel - 200' span, 300 kip	232.05	Lb	4.12	956.05
Reinforcing in Place - Elevated slabs, #4 - #7	10.974938	Ton	2025	22224.25
Normal Weight Concrete - 5000 psi	202.94267	C.Y.	120	24353.12
Placing Concrete - 6"-10" thick, pumped	202.94267	C.Y.	28.5	5783.87
Concrete in Place - Columns, square (4000psi), 24"x24" average reinforcing	1.3836048	C.Y.	1275	1764.10
			Total \$	55081.38

Proposed Gravity System				
Building Element	Quantity	Unit	Unit Cost	Total Cost
Precast Slab Planks - Hollow, 8" thick	1056	S.F.	10.35	10929.6
Finishing Floors - Integral topping and finish, 2" thick	1056	S.F.	6.55	6916.8
Structural Steel Members - Beam, W 14 x 82	88	L.F.	201	17688
Structural Steel Members - Beams, W 8 x 10	72	L.F.	27	1944
Columns Structural - W Shape, 12 x 40	9.33	L.F.	86.5	807.045
			Total \$	42113.99

E	xisting Lateral System			
Building Element	Quantity	Unit	Unit Cost	Total Cost
Placing Concrete - walls, 8" thick	129.30859	C.Y.	96.5	12478.28
Reinforcing in Place - Columns, #3 - #	7 1.37676	Ton	2750	3786.09
Forms In Place, Walls - job-build plywood, ov	er 8' 3 use 210.0219	SFCA	13.95	2929.81
				0.00
			Total \$	19194.17
Forms In Place, Walls - job-build plywood, ov	er 8' 3 use 210.0219	SFCA		0.

Proposed Lateral System				
Building Element	Quantity	Unit	Unit Cost	Total Cost
Columns Structural - W Shape, 12 x 53	77.3	L.F.	146	11285.8
Structural Steel Members - Beams, W 8 x 10	180.664	L.F.	27	4877.928
Braces - Star Seismic BRBF bolted lug connection				11000
				0
			Total \$	24447.36

		Existing Ap	partment Partitions	
Partition	Label	Room #'s	Description	STC Value
Apartment demising wall	A12/A23	Apartment-Apartment	Two layers 1/2" GB each side of 3-5/8" studs 16" O.C. plus 1-1/2" FG	55
Corridor wall	A12/A23	Apartment-Apartment	Two layers 1/2" GB each side of 3-5/8" studs 16" O.C. plus 1-1/2" FG	55
Bedroom wall	A.53	Bedroom-Bedroom-Living Area	One layer 5/8" GB 3-5/8" studs 16" O.C. plus 1-1/2" FG	50
Exterior wall	Type 1	Apartment-Outside	4" masonry, 2 1/2" stone wool/acoustical insulation, 5/8" GB	60
Floor/Ceiling Assembly	\$5.00	Apartment-Apartment	8" PT slab, ceiling tiles, carpeting	58

		Proposed A	partment Partitions	
Partition	Label	Room #'s	Description	STC Value
Apartment demising wall	NA	Apartment-Apartment	Three layers 1/2" GB each side of 3-5/8" studs 16" O.C. plus 3" FG	61
Corridor wall	NA	Apartment-Apartment	Three layers 1/2" GB each side of 3-5/8" studs 16" O.C. plus 3" FG	61
Bedroom wall	NA	Bedroom-Bedroom-Living Area	One layer 5/8" GB 3-5/8" studs 16" O.C. plus 1-1/2" FG	50
Exterior wall	Type 1	Apartment-Outside	4" masonry, 2 1/2" stone wool/acoustical insulation, 5/8" GB	60
Floor/Ceiling Assembly	NA	Apartment-Apartment	8" hollow core plank 2" topping, acousitcal ceiling tiles	59

	Wi	nd Force De	terminatio	on N-S		
Building Level	Height above ground level z (ft)	Kz	qz	Pz(W)	P _{h(L)}	Total (psf)
Level 1	0.0	0.575	16.54	10.66	-11.18	21.84
Level 2	12.0	0.575	16.54	10.66	-11.18	21.84
Level 3	22.7	0.647	18.61	11.99	-11.18	23.17
Level 4	33.3	0.722	20.78	13.39	-11.18	24.57
Level 5	44.0	0.782	22.49	14.49	-11.18	25.67
Level 6	54.7	0.832	23.93	15.42	-11.18	26.60
Level 7	65.3	0.875	25.18	16.23	-11.18	27.41
Level 8	76.0	0.914	26.29	16.94	-11.18	28.12
Lower Roof	87.9	0.953	27.41	17.66	-11.18	28.84
PH Roof	95.9	0.977	28.10	18.11	-11.18	29.29

	Win	d Force De	terminatio	n E-W		
Building Level	Height above ground level z (ft)	Kz	qz	Pz(W)	Ph(L)	Total (psf)
Level 1	0.0	0.575	16.54	11.18	-4.69	15.87
Level 2	12.0	0.575	16.54	11.18	-4.69	15.87
Level 3	22.7	0.647	18.61	12.58	-4.69	17.27
Level 4	33.3	0.722	20.78	14.04	-4.69	18.73
Level 5	44.0	0.782	22.49	15.20	-4.69	19.89
Level 6	54.7	0.832	23.93	16.18	-4.69	20.87
Level 7	65.3	0.875	25.18	17.02	-4.69	21.71
Level 8	76.0	0.914	26.29	17.77	-4.69	22.46
Lower Roof	87.9	0.953	27.41	18.53	-4.69	23.22
PH Roof	95.9	0.977	28.10	19.00	-4.69	23.69

	Base She	ear Determ	ination N-S	
Building Level	Height above ground level z (ft)	Tributary Height (ft)	Total Pressure (psf)	Total Lateral Story Force (kip)
Level 1	0.0	6.00	21.84	39.31
Level 2	12.0	11.34	21.84	74.26
Level 3	22.7	10.67	23.17	74.14
Level 4	33.3	10.67	24.57	78.60
Level 5	44.0	10.67	25.67	82.18
Level 6	54.7	10.67	26.60	85.11
Level 7	65.3	10.67	27.41	87.68
Level 8	76.0	11.30	28.12	95.29
ower Roof	87.9	9.96	28.84	86.18
PHRoof	95.9	4.00	29.29	35.15
		Total Bas	e Shear (kips) =	737.90

	Base She	ar Determ	ination E-W	
uilding Level	Height above ground level z (ft)	Tributary Height (ft)	Total Pressure (psf)	Total Lateral Story Force (kip)
evel 1	0.0	6.00	15.87	5.81
evel 2	12.0	11.34	15.87	10.97
evel 3	22.7	10.67	17.27	11.24
evel 4	33.3	10.67	18.73	12.19
evel 5	44.0	10.67	19.89	12.95
evel 6	54.7	10.67	20.87	13.58
evel 7	65.3	10.67	21.71	14.13
evel 8	76.0	11.30	22.46	15.48
ver Roof	87.9	9.96	23.22	14.11
HRoof	95.9	4.00	23.69	5.78
		Total Bas	e Shear (kips) =	116.22

Level: Roof, Diaph: 1	l	
Center of Mass (ft):	(141.09, 48.50)	
LdC	Disp X	Disp Y
	in	in
D	0.02980	-0.02435
Lp	0.01083	-0.00667
W1	0.84420	0.02105
W2	0.03478	2.47560
W3	0.63352	-0.00380
W4	0.63279	0.03538
W5	0.02137	2.11153
W6	0.03080	1.60187

Name	Value	Reference
site class	С	per geotechnical report
Se	0.175	USGS app
S ₁	0.051	USGS app
Fa	1.2	table 11.4.1
Fv	1.7	table 11.4.2
S _{MS}	0.21	
S _{M1}	0.0867	
Sps	0.1400	
S _{D1}	0.0578	
Occupancy Cat.	ш	table 1-1
Importance Factor	1.00	table 11.5-1
Design Cat. Based on Sps	Α	table 11.6-1
Design Cat. Based on S _{D1}	В	table 11.6-2
design method	equivalent lateral force	section 12.8
R	8	table 12.2-1
Co	0.018	eq. 12.8-2
W=	15139.6	kips
Ta=	0.000	eq 12.8-7
k=	0.750	12.8.3
Seismic Base Shear	264.943	kips

Name Value Before

LEVEL	h _x (ft)	W _x (k)	$W_x h_x^{\ k}$	C _{vx}	F _x (k)	V _x (k)	OVERTURNING MOMENT (ft-k)
Level 1	0.00	1767	0	0.000	0.00	264.9	0.00
Level 2	12.00	1936	25287	0.040	10.66	264.9	127.87
Level 3	21.3	1888	44638	0.071	18.81	254.3	400.67
Level 4	30.67	1889	65097	0.104	27.43	235.5	841.34
Level 5	40	1888	85614	0.136	36.08	208.0	1443.11
Level 6	49.3	1888	106314	0.169	44.80	172.0	2208.68
Level 7	58.67	1460	98379	0.156	41.46	127.2	2432.28
Level 8	68	1481	116279	0.185	49.00	85.7	3332.01
ower Roof	78.83	844	77167	0.123	32.52	36.7	2563.41
PH Roof	86.67	99	9944	0.016	4.19	4.2	363.19
TOTAL		15140	628717	1.0000	264.94		13712.55